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Abstract

A new family of life distributions, called the wear-out distributions,
is developed on the basis of a failure rate function, which is a con-
stant up to the change-point and strictly increasing afterwards. Prop-

* erties of these wear-out distributions are derived and a Bayes adaptive
procedures is developed for the estimation of the change point. Recur-
sive formulae are given for the determination of the posterior probability
that the change has occurred and of its Bayes estimator. The results of
numerical simulations are given to illustrate the properties of the adap-
tive procedure.
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1. Introduction

Consider a system having several components, whose life distribu-

tions depend on the state of the system. Each component is replaced

immediately after failure (corrective maintenance), or at scheduled

replacement epochs (preventive maintenance). The optimal scheduling

of the replacement epochs depends on various economic considerations,

and on the particular life distribution of the component. This in turn

depends on the state of the whole system. We recognize two phases of

the system. Phase I is the phase in which the components have a con-

stant failure rate, X . Phase II is the phase in which the failure

rate is greater than X and increasing. Phase I is a mature stable

phase of the system, while Phase II is a wear-out phase. It is impor-

tant to detect early the transition of the system from Phase I to Phase

II. Optimal replacement scheduling and inventory management during the

wear-out phase of the system are different from those appropriate to the

constant failure rate phase. The present paper is devoted to the study

of the detection of the shift from Phase I to Phase II, and estimating

the change point, t ,.where this shift occurs.

In Section 2 we derive from a specified failure rate model an

appropriate life distribution for the present study. This life distri-

bution is a composition of an exponential distribution with a Weibull.

It seems to be new in the sense of not being dealt with in the litera-

ture on reliability. We shall call it the wear-out life distribution.

Several properties of this distribution are presented in Section 2. In

Section 3 we develop a Bayes adaptive procedure of estimating the change-

point T., on the basis of a sequence of the replacement times of the

component. Section 4 is devoted to the derivation of some recursive

formulae, which are required by the adaptive procedure. In Section 5

we provide some simulation results, which provide information of the

characteristics of the detection procedure.

4
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2. The Wear-Out Life Distribution

The wear-out life distribution is based on the following non-

decreasing failure-rate function

X if OstST

h(t;X,a,T) (2.1)

X+X ao(t-T+)a-l , if T<t

where X is the constant failure-rate in Phase I, O<X<- ; a is a shape

parameter, la<- and T is the change point parameter T+-Max(O,T) .

If TO the system is already in Phase II. The present model represents

a superposition of a Weibull failure-rate function (see Mann, Schafer

and Singpurwalla [1 ;pp.127]) on a constant failure-rate function for

tZT+ . Notice also that the limiting case of a-1 corresponds to a

shift at T from an exponential life distribution with MTBF Ul-i/X to

an exponential life distribution with an MTBF U2-1/2A , i.e., for all

t>T , p{XktlxzT} - exp{-2X(t-T)} . From this failure-rate model we

obtain a life distribution, called the wear-out life distribution, with

a c.d.f.
x a-1

F(x;X,a,T) - l-exp{-X f(l+M(t-r+ )-)dt}

(2.2)

- l-exp{-Xx-(X(x-+)+) } , x20

Obviously, F(x;X,a,T) - 0 for x90.

The corresponding p.d.f. is

f(x; ,,TCt) " eAX(l+CX(ZX-T?))c -I )

(2.3)
--exp(-A. (x-T+)+ , ZO

It follows the conditional p.d.f. of X (the life length), given

(Xzr} , which is the p.d.f. of the residual life distribution in Phase

II, is
S (X-T+ ; k ,) - xe- ,X(x-T+) (+ (X (X-T +)) C-l)

• exp(-XA(x,-r.) I , xkr (2.4)

Notice that 6ml/X is a scale parameter of this distribution, and that

T+ is a location parameter of the truncation type (see Zacks [3 ;PP .141).

-, - - - - -
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f(x; 1,2,r) (1+2(x-r)+) expl-x-(x--r)2}
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Figure 1. Density functions of the wear-out distribution
for X=1, ot =2 and r=O, 1 and m (exponential).

-= ___________________________



-5-

In Fig. I we present graphs of the wear-out life density (2.3) for

a-2, A-I and various values of T . We remark here that, if r

is very large compared to 1/A , the wear-out distribution is practi-

cally an exponential distribution with mean p-i/A . This is the case

when the system is far from its wear-out phase. We conclude the present

section with a presentation of the formula for the moments of the wear-

out distribution (2.3). Since I/A is a scale parameter, we will pre-

sent the moment pr (c,r) for the case of A- . If AXi then
r

rr

The r-th moment in the standard case is for -)

r (CT - f x ~d + f xr -X-(-)1+LXT11 d0
rr

-r!(l-Pos(r-))

+ e r rZ ()T M H(a) ,(2.5)

where k A

Pos(kIA) - e Z , (2.6)

is the Poisson c.d.f. and

- iy-

- Iyeyy (l+a-y-l)dy , Jk0 (2.7)
0

Integration by parts yields, for every Jkl

a y-e- (Y4,)dy , (2.8)
1 0

which is smaller than r(j+l) - j! for all J2l . Notice that M0(W-1

for all tl a The integral in (2.8) can be evaluated numerically. In

the case of a-2 we obtain, for all J l ,

M (2). je1/4 7 l (2.9)
0

-/2-

* i ! I
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where, for all W2 ,

1 2
B(;C) I ze 2 dz

(2.10)

-ep{-_ 1 E21 + (L-1) B(t-2;g)

and

B(0;g) - / (1-§(E))

(2.11)

B(l .;C) - ex{ 1C2,

where 4(z) is the standard normal c.d.f.
1

The functions B(Z; 1 ) can be determined recursively, according to

(2.10) and (2.11). In Table 2.1 we provide the first four moments, the

standard deviation a , the measures of skewness yl and kurtosis, y2 ,

of the wear-out distribution for A-I , a-2 and several values of T

Table 2.1 The first four aoments, standard deviation, and measure

of skewness and kurtosis of the wear-out distribution, for X1 ,a-2

ast T-0(.5)2 , 3(1)7

T 0 .5 1.0 1.5 2.0

0.54564 0.72442 0.83285 0.89862 0.93851

12 0.45436 0.78694 1.09709 1.35098 1.54486

U3 0.47769 1.03764 1.76118 2.53153 3.25967

0.59026 1.55837 3.18161 5.34890 7.86491
a; 0.39577 0.51201. 0.63518 0.73720 0.814§06

0.94918 0.65373 0.68460 0.85060 1.04106
Yi 3.80641 2.95378 2.68424 2.87374 3.32183

T 3 4 5 6 7

U 0.97738 0.99168 0.99694 0.99887 0.99959

.2 .78732 1.90511 1.95897 1.98265 1.99279

U3 4.42171 5.15969 5.57697 5.79571 5.90446

U4 12.93668 17.10481 20.00519 21.81282 22.85481

a 0.91217 0.96005 0.98239 0.99242 0.99680

Y1 1.38130 1.63008 1.79281 1.89034 1.94467

Y2 4.55947 5.85946 6.96183 7.77159 8.30424

-Z;70(.. Tw
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* The exponential distribution is the limiting case when V+~ The

moments of the exponential distribution with X-1 are U 1 .l, U 2wn2,

U36and V14-24 . We see in Table 2.1 that when T-7 the moments

of the wear-out distribution are already close to those of the limiting

exponential distribution.

101-
F"t I- i7R



3. Bayes Estimation of the Chane Point

In the present section we develop the Bayesian framework for estim-

ating the change point, T , and deciding whether the transition to Phase

II has taken place.

Given a sequence tl t 2 ,.., of replacement epochs, where

O<t <t2<... , we consider the random variables X- t _-til(i-1,2,...)

where to - 0 . X represents the operational time length of i-th

sequentially installed component. Since the preventive maintenance

replaces the component after A units of time, Xi - min(Yi1A) , where

YIY,2,... are independent random variables having the wear-out distri-

bution, with parameters X,a and Ti - T-ti_1 (i-1,2,...) . ri  is the

length of time left for the system, after the i-th installment of the

component till the transition to Phase II. If ri<0 , the chang to

Phase II has taken place before ti_1 .

In the present study we assume that A and a are known. The

only unknown parameter is the change point, r . Without loss of gener-

ality we assime that X-1 . If Xa2 replace Xi  in the formulae below

by Xi(i-1,...,n)

Given n replacement points t1 <t 2 <.....<t , let X(n)m(Xl,...,x n)'

where X i ti-ti_1 , and define

I ,if Xi4

J, a (3.1)

0 ,if xi  A

(U)
The likelihood function of T , given X n  is

L(T;X n ) - (TS01 ezp(- E x4 9 (1+mi

n-1 n a

I k-j+l k-j+l

+{{} [-l" U IJ(Z J a(Xn+ctn.I-) 'I] exp-(X +t _1-I )t}

} , (3.2)

where I{A) L the indicator function of the set A.

7:N
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Generally,. let g(T) denote the prior p.d.f. of r . Then, the

posterior p.d.f. of t , given X (n ) , is

E(T]x - (T)L(T;X(n))/D(Q;X(n)) , (3.3)

where

D(;X (n )  " L(t;X )dP (T:t) • (3.4)

In the present study we consider a prior distribution with p.d.f.

p ,if TST0

E(T) - (3.5)

(l-p)*e -*( -TO) , if T>T

where O<p<l and 0<0<- .T is a time point such that, with high

prior probability, 1-p , the true wear-out point, r , exceeds it. We

are interested therefore in time points greater than T 0 . We shall

assume accordingly, without loss of generality, that T0"0 For the

prior p.d.f. (3.5) under consideration, the function (3.4) assumes the

form
D(p,*;X(n)) p exp(-z Xn c [l' Jxi-l

i-l i-i
n-ia-

+ (l-p) E exp{- '_} [I4UJk -l]
j-. k-j +i k-j+l

-*tX-l 1 e-(X u
e (l) Ae * e l+u(Xn-U) ] e(XnjU) du

0

"+1P* n-1 ?-uu Cl+aJ n(Xn-u)"_1 I e-(Xa-u) du

-it n

+ (l-p)e . (3.6)

The posterior probability, after observing (n) , that the transition

to Phase II has already taken place (i.e., {tt }) is pn -

where

- (1-p)e n/D(p,$;x" ") • (3.7)

If Pn is large we have high evidence that the change has already taken

place. In addition, after observing A(n) the Bayes estimator of T

for squared error loss function, is the posterior expectation of r

given . This estimator is deteroined by the formula

- ,**~ - . . . . ,- -.- .. -. 4

'll I I | •
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T n(p,*;X(n ) -E{IX (n) p  -

n- na-
* I exp{- Z Xk'j-i k-j+l k-j+l

.e'*tj-i 'J (tj_iu)e*U [l-,.Jj(Xj-u)(1- l ] e du
0

-4it X a
+ (l-p)*e -1 n( +u)eU

-t[l+ X -u) e-(nU

+ (1-p)*e f (tn+u)e-*Udql} + D(p,,;X(n)) . (3.8)
0 (n

Notice that if X*1 we determine Pn and Trn(p,*;X~n) by substi-

tuting in the above formula XXi  for Xi  and */X for 4'

Thus, we can compute pn and Tr adaptively, after each replace-n U
ment, and decide that the change has occurred at the first time T nt

or Pn ais sufficiently large. Shiryaev [ 2] studied the problem of

the quickest detection of the occurrence of a change in a specifided

distribution. He showed that, when the distributions before and after

the change are known, the optimal Bayes sequential stopping time is at
* *

the smallest n2l for which pnk;, . H is a threshold that can be

determined to minimize the total expected loss. Our problem is however

different. First, we do not have just two known distributions with a

switch from one to another at an unknown change-point, T , but a

sequence of wear-out distributions with unknown parameters ri I and we

wish to detect the time point at which, for the first time, .0

Moreover, we do not have a sequential stopping problem, but an adaptive

decision problem. The replacement process is continuing also after the

decision that T 10 has been reached. The implications of this deci-

sion are on the adaptation of the scheduled replacement period, A

and on the inventory of spare components. In the following section we

provide some recursive formulae for the determination of D(p,* ;A(n))

an nd T~p*

n( *Xn
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4. Recursive Formulae

From (3.3) and (3.5) one immediately obtains that, for every
tat (n-1, 2,... )

~ (l-p) e (4.1)P{ -> IX~) } =((.)

D(p,*;X(n)

Cobining this result with (3.7) we obtain for all tt n

-( - t- )
PpTntjX (n ) } - (1-Pn)e , (4.2)

where pn is the posterior probability of {(<t n }  This yields that,
(n)

after observing X , the posterior distribution of T for Tt is~ ' n
of the same form as (3.1), with p replaced by pn , i.e., the poster-

ior p.d.f. of T , given 4(n) satisfies

pn , if Ttn

*() U )  (4.3)

(l-PnU e , if T>tn

According to (3.6), the function D D(p,*;X(l)) , nal , can be com-

puted by the following recursive formula

Dn DnUl (l+aJ nXnl) exp{-X }n + li

x

n
0~

where Do = 1.

Notice that fbr all X , O<X<" ,
D(p,O;X_( )  D(p,*/X;M n )  (4.5)

Employing (3.7) and (4.4) we obtain

(l-p)e -tn (1-p) e-*tn-1 D n-I -Xn
D-Pn D D D e

-1$Xn

- DD1 (4.6)
• m n-1 n I Ila
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Moreover,

Dn k-i ct
Dn " P- (l+QinXnk l  exp{-: +
D n- 1  ni 1 4 na

X
(1-pn~) I-n e-OU(l+aJn(XnU)c' - l ) exp{_(XnU)(11d u

n- i n nf xp- n

0

+ (1-p )e (4.7)

Thus, define for all Ox<A the function

Y (p,*,x) - pe-*X(1-uJx ) +

(1-p)* e-U(+a(x-u) - l ) exp{-(x-u)ctadu

0

+ (l-p) exp{-Ox}, (4.8)

where J = I{x<A} . It follows from (4.7) and (4.8) that, for every

nal ~.(n)(n1) (49
D~p ;, -D(p,*J;XZ ) Ya(Pn-l,*,X n ) (49

and
(i-Pn_) exp{-*Xn }

p -1- (n-i ) x ) n (4.10)
T a (Pa...1,J'Xu)

The integral in (4.8) can be evaluated numerically, or according to the

formula

x a-1
(1-p)* f e (l+J(x-u) )e( -u)du "

0

(i-p) _E. e-*x r -- [r xca; -L+ ) + aJr( X; -I- + 1) 1 (4.11)
a i a a

x zV.1le

where r(x;v) -f z e dz is the incomplete gama function (v>0)
0

In the case of a-2 we obtain the explicit formula

____ If
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T 2 (p,*,X) -pe-'
2 (1+2Jx) +

(1-)*eTPX* / 5 [(/i(x - A- + 0( -t-~ -1] (1+J*p)

22

+J(l-p)e*x ' 1 4 j- * 0JL* -_ x) I

+(l-p) e7* (4.12)

where $(z) and O(z) are, respectively, the p.d.f. and the c.d.f. of

the standard normal distribution.

We discuss now the recursive determination of the Bayes estimator

Of T. According to (3.8)

(n)+
T n(p,*;E E n + (l-p n) (t + (4.13)

where

E r ~a n-i'-'i] exp{- EXF}

j 1 k-i +1 k-i +1

J-11 exp-( -u)ld
e f (t 1 1 +u) e7*u+J 1 (X 1-u) Iep-Xi-)md

+ (l-p)*e a (trl.L) - [I1*n(X-u*-] xp-A -U)d 4-J D

nZ2 (4.14)

Define the function

n ,,,( p * , t ~ x ) - ( 1 -p e 7 * t * ( t -Y ) ( l + % c i- 1 ) ~ - y( .5

0

Then,

and, for every na1

+ nU (p9*9tU 1,Xn~1 )] 4Dn+i (4.17)

2m
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The function n2 (p,*,t,x) can also be written in terms of the

p.d.f. and c.d.f. of the standard normal distribution as

n2 (p.,*t,x) - (lp)*e- t+*2 4 ,

_2-([(X -+ ) + %(- ](t + (t*"- i)

2 2 2

(tx" -2 - 2 - - 1

...(.) (+.... ......................
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5. Some Numerical Simulations

We present here results of some simulations, which illustrate numer-

ically the characteristics of the procedure developed in the previous

sections. In order to simulate a random variable Y , having a wear-out

distribution with parameters X,a and T , proceed as follows. First,

simulate a random variable U , having a uniform distribution on (0,1)
Then, solve for Y the equation

exp {-AY - X',(Y-T)a} - U (5.1)

Finally, determine X - min (Y,A)

In the present study we restrict attention to the case of a-2

Accordingly,
1 In U if U2e - Xz

Y a (5.2)
1 + 1 U )1/2 f<e

In the following examples we consider a system with A - 200 [hr]
A - 225 [hr] , T - 750 (hr] , a - 2 and the prior probability that

{TSO} is p - .2 . For the simulation of the random variable

Xn , (n-,2,...) we apply a value of T. M (T-tn-l)+ . The values of

the posterior probabilities, p , and those of the Bayes estimators,
A n

Tn , are computed adaptively after each stage. In Table 5.1 we present
the results of such a simulation run.

Table 5.1. A Simulation Run with Parameters

X - 1/200, t - 1/1000, p - .2, T - 750

n n t Pn Tn

1 41.49 1 41. 0.288 742.71

2 156.56 1 198. 0.473 646.85

3 108.39 1 306. 0.631 514.63

4 225.00 0 531. 0.437 921.39

5 225.00 0 756. 0.309 1317.66

6 31.19 1 788. 0.385 1237.91

7 23.03 1 811. 0.446 1170.46

8 115.07 1 926. 0.610 1011.46

9 14.04 1 1040. 0.742 866.27
10 20.53 1 1060. 0.779 815.35

11 27.09 1 1087. 0.820 758.42

.. .. ... .. .-. 4,
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We see in the above example that the first value of t larger than, n

T is tn - 1040 [hr] . This is greater than T by 290 (hr] , whichn n
is a little over than 1 MTBF. The corresponding value of P. is

p .742 . The estimate Of T is T= 866.27 . We see also that if
n . n

we defer the decision until pn>. 8 then tn - T - 337 [hr] and

T n 758.42 . Thus, the second decision (stopping) time provided a

more accurate estimate of r . In Table 5.2 we present frequency dis-

tributions and the exact means and standard deviations of W - tn - Tn n

as obtained by M-100 independent simulation runs, for each one of the

prior parameters 4 - 1/500, 1/750 and 1/1000 . The decision time in

these simulations is the first value of t greater than Tn i.e.,U n

t n least nl, such that t >a (5.3)

Table 5.2. Frequence Distributions, Means and Standard

Deviations of W in M-100 Simulation Runs

Kid Point .... Frequencies
Interval 1/*-500 1/t-750 1/0-1000

-500 10 0 0

-400 35 28 15

-300 17 37 22

-200 21 7 19

-100 8 11 6

0 0 0 10

100 6 7 10

200 3 9 5

300 0 1 7

400 0 0 6

Mean -278.15 -218.44 -l31.72

St. Dev. 167.44 201.88 239.82

We see in Table 5.2 that the decision time t tends to yield too many earlyn
decision points. If 1/*-1,000 [hr] the results are significantly

better than in the case of 1/-500 or 750 [hr]

The situation seems to be better in the case of the decision times

defined by

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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**

t = least n s.t. pn2. 9  (5.4)

n nIn Table 5.3 we present the frequency distributions of Wa t n  -T,

obtained in independent simulation runs.

Table 5.3. Frequency Distributions, Means and Standard

Deviations of W in M.100 Simulation Runs
n -

Mid Point Frequencies
of

Intervals i/*=500 1/4-750 l/ -I000

-300 15 2 2

-200 17 22 19

-100 17 12 13

0 10 16 10

100 6 0 4

200 4 7 7

300 8 5 7

400 2 4 3

500 12 17 6

600 9 13 25

700 0 2 4

Mean 65.60 152.85 202.13

St. Dev. 311.78 325.40 322.37

It seems that the Bayes decision times t based on the priorn
distribution (3.5), with a proper choice of the go value (not

too small), provide good results in the problem of detecting a

shift to the wear-out phase.
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*A new family of life distributions, called the wear-out distributions, is de-

veloped on the basis of a failure rate function, which is a constant up to thi
change-point and strictly increasing afterwards. Properties of these wear-oul
distributions are derived and a Bayes adaptive procedure is developed for the
estimation of the change point. Recursive forulae are given for the deter-
mination of the posterior probability that the change has occurred and of its
Bayes estimator. The results of numerical simulations are given to illustrat
the properties of the adaptive procedu~re.

DO 1 1473 EDITION or I Nov 651is OsSOLKTE
S/N 0 102. LN 0 14- 6601 SECURIjTY CASSIFICATrION or Tpgis PAGE (fteft Dastasaleo

_____7




